Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

Q is empty.

The TRS is overlay and locally confluent. By [15] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

MINUS(x, y) → LE(x, y)
MINUS(x, y) → IF(le(x, y), x, y)
LE(s(x), s(y)) → LE(x, y)
IF(false, x, y) → MINUS(p(x), y)
IF(false, x, y) → P(x)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(x, y) → LE(x, y)
MINUS(x, y) → IF(le(x, y), x, y)
LE(s(x), s(y)) → LE(x, y)
IF(false, x, y) → MINUS(p(x), y)
IF(false, x, y) → P(x)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

MINUS(x, y) → LE(x, y)
MINUS(x, y) → IF(le(x, y), x, y)
LE(s(x), s(y)) → LE(x, y)
IF(false, x, y) → MINUS(p(x), y)
IF(false, x, y) → P(x)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LE(s(x), s(y)) → LE(x, y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LE(s(x), s(y)) → LE(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LE(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(x, y) → IF(le(x, y), x, y)
IF(false, x, y) → MINUS(p(x), y)

The TRS R consists of the following rules:

p(0) → 0
p(s(x)) → x
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))

The set Q consists of the following terms:

p(0)
p(s(x0))
le(0, x0)
le(s(x0), 0)
le(s(x0), s(x1))
minus(x0, x1)
if(true, x0, x1)
if(false, x0, x1)

We have to consider all minimal (P,Q,R)-chains.